Category Archives: Neuroscience

Napping is Science-Based

Source: Fast Company, Jul 2017

Studies of napping have shown improvement in cognitive function, creative thinking, and memory performance. As I mentioned in my post about the body clock and your body’s best time for everything, we’re naturally designed to have two sleeps per day:

The idea that we should sleep in eight-hour chunks is relatively recent. The world’s population sleeps in various and surprising ways. Millions of Chinese workers continue to put their heads on their desks for a nap of an hour or so after lunch, for example, and daytime napping is common from India to Spain.

Naps can even have a physical benefit. In one study of 23,681 Greek men over six years, the participants who napped three times a week had a 37% lower risk of dying from heart disease. Not to mention a host of other positive outcomes that might occur from regular napping:

Sleep experts have found that daytime naps can improve many things: increase alertness, boost creativity, reduce stress, improve perception, stamina, motor skills, and accuracy, enhance your sex life, aid in weight loss, reduce the risk of heart attack, brighten your mood and boost memory.

Memory

Naps have been shown to benefit the learning process, helping us take in and retain information better. In one study, participants memorized illustrated cards to test their memory strength. After memorizing a set of cards, they had a 40-minute break wherein one group napped, and the other stayed awake. After the break, both groups were tested on their memory of the cards, and the group who had napped performed better

Learning

Taking a nap also helps to clear information out of your brain’s temporary storage areas, getting it ready for new information to be absorbed. A study from the University of California asked participants to complete a challenging task around midday, which required them to take in a lot of new information. At around 2 p.m., half of the volunteers took a nap while the rest stayed awake.

The really interesting part of this study is not only that at 6 p.m. that night the napping group performed better than those who didn’t take a nap. In fact, the napping group actually performed better than they had earlier in the morning.

Avoiding burnout

study from Massachusetts showed how napping can help your brain recover from ‘burnout’ or overload of information:

To see whether napping could improve visual discrimination, a team led by Robert Stickgold, a neuroscientist at Harvard University in Cambridge, Massachusetts, had college students who were not sleep deprived stare at a video screen filled with horizontal bars. Periodically, three diagonal bars flashed in the lower left corner of the screen, and the students had to say whether these bars were stacked horizontally or vertically. The researchers graded students’ performance by measuring how long the diagonal bars had to be shown in order for them to answer correctly 80% of the time.

Students sat through 1,250 frustrating trials during each session, so those who did not nap did worse and worse over the course of the day. But students who took a 1-hour nap returned to their original performance levels in the next test.

What’s happening in your brain during a nap?

Some recent research has found that the right side of the brain is far more active during a nap than the left side, which stays fairly quiet while we’re asleep. Despite the fact that 95% of the population is right-handed, with the left side of their brains being the most dominant, the right side is consistently the more active hemisphere during sleep.

How to get the most from your nap

Learn how long you take to fall asleep

Don’t sleep too long.

Choose the right time of day.

Advertisements

Mapping the Brain’s 11 dimensions

Source: Wired, Jun 2017

Instead of a meaningless pile of data, she saw in Markram’s results an obvious place to apply her abstract math goggles. “Topology is really the mathematics of connectivity in some sense,” she says. “It’s particularly good at taking local information and integrating it to see what global structures emerge.”

For the last two years she’s been converting Blue Brain’s virtual network of connected neurons and translating them into geometric shapes that can then be analyzed systematically. Two connected neurons look like a line segment. Three look like a flat, filled-in triangle. Four look like a solid pyramid. More connections are represented by higher dimensional shapes—and while our brains can’t imagine them, mathematics can describe them.

Using this framework, Hess and her collaborators took the complex structure of the digital brain slice and mapped it across as many as 11 dimensions. It allowed them to take random-looking waves of firing neurons and, according to Hess, watch a highly coordinated pattern emerge. “There’s a drive toward a greater and greater degree of organization as the wave of activity moves through the rat brain,” she says. “At first it’s just pairs, just the edges light up. Then they coordinate more and more, building increasingly complex structures before it all collapses.”

Nanoporous materials are super useful for all sorts of industries—from gas separation to chemical storage to medicine. And the performance of these materials depends on the shape of their pores, something that’s really difficult to quantify. So when scientists are looking for new materials to do certain jobs, they rely almost entirely on visual inspection of the more than 3 million nanoporous materials out there. Hess used algebraic topology to quantify the similarity of pore structures instead, assigning a sort of geometric fingerprint to each one. It’s a computational method chemical engineers can now use to find exactly what they need without having to stare into a microscope for days on end.

Markram is as on-brand now as ever. His signature style is to present ideas too speculative for most scientists to countenance and then find ways to test them despite (and often in spite of) the haters. His latest hypothesis: that those patterns of increasingly complex neuronal structures represent ever richer and more interesting responses to stimuli. He thinks it’s how people learn. Maybe even where they store memories. To find out, Argonne National Laboratory outside of Chicago, Illinois gave him 100 million core hours on their super-super computer to run a year-long simulation to see how those patterns change and evolve over time. At the end of 2017 Markram will pass off that mountain of data to Hess. Then it will be up to the math to decide.

Neuroscience of Intelligence

Source: James Thompson posting on Unz.com, Jan 2017

Only 4% of the white population can do all the tasks in the list. 21% get to the 4th level but cannot do carpet cost type problems, and at the very bottom 14% have very simple skills, which do not include locating an intersection on a street map. For many of you reading this, the finding will seem incredible. It is incredible. Human differences are hard to believe, but they are matters to be demonstrated, beliefs notwithstanding.

In a large Dutch twin study (Posthuma et al ., 2003b ),the same identical twins were given mental test batteries repeatedly over time to assess general intelligence. The heritability estimate of general intelligence was 26% at age 5, 39% at age 7, 54% at age 10, 64% at age 12, and starting at age18 the estimate grew to over 80%. The increases could be due to several factors including more genes “turning on” with increasing age or gene– environment interactions.

in a study of 641 Brazilian school children, SES did not predict scholastic achievement, but intelligence test scores did (Colom & Flores-Mendoza, 2007). An even larger classic study had data on 155,191 students from 41 American colleges and universities. Their analyses showed that SAT scores predicted academic performance about the same even after SES was controlled; that is, SES added no additional predictive power (Sackett et al ., 2009 )

In 1988 Haier published the first PET study of students taking the Raven’s Matices test, showing that the brains of such students differed in terms of areas activated from those students doing a simpler attention task. In a master-stroke he correlated the Raven’s scores with brain activity, showing that the brightest students showed less brain activity. That’s right: less activity. Hence my frequent advice to earnest people who want to use more of their brain, which is that they should be bright enough to use less of their brain. Why sweat the small stuff?

Haier and colleagues proposed the brain efficiency hypothesis of intelligence:higher intelligence requires less brainwork.

Your Mind: Beyond Your Brain and Body

Source: QZ.com, Dec 2016

… what is a mind? Defining the concept is a surprisingly slippery task. The mind is the seat of consciousness, the essence of your being. Without a mind, you cannot be considered meaningfully alive. So what exactly, and where precisely, is it?

Traditionally, scientists have tried to define the mind as the product of brain activity: The brain is the physical substance, and the mind is the conscious product of those firing neurons, according to the classic argument. But growing evidence shows that the mind goes far beyond the physical workings of your brain.

our mind cannot be confined to what’s inside our skull, or even our body, according to a definition first put forward by Dan Siegel, a professor of psychiatry at UCLA School of Medicine and the author of a recently published book, Mind: A Journey to the Heart of Being Human.

… a key component of the mind is: “the emergent self-organizing process, both embodied and relational, that regulates energy and information flow within and among us.” It’s not catchy. But it is interesting, and with meaningful implications.

The most immediately shocking element of this definition is that our mind extends beyond our physical selves. In other words, our mind is not simply our perception of experiences, but those experiences themselves. Siegel argues that it’s impossible to completely disentangle our subjective view of the world from our interactions.

The definition has since been supported by research across the sciences, but much of the original idea came from mathematics. Siegel realized the mind meets the mathematical definition of a complex system in that it’s open (can influence things outside itself), chaos capable (which simply means it’s roughly randomly distributed), and non-linear (which means a small input leads to large and difficult to predict result).

In math, complex systems are self-organizing, and Siegel believes this idea is the foundation to mental health. Again borrowing from the mathematics, optimal self-organization is: flexible, adaptive, coherent, energized, and stable. This means that without optimal self-organization, you arrive at either chaos or rigidity—a notion that, Siegel says, fits the range of symptoms of mental health disorders

Learning Starts from the Brain

Source: Nautilus, Sep 2016

People who disengage their executive systems the fastest are the best learners.  

Learning Thinking without Language

Source: Scientific American, Sep 2016

The research suggests a radically different view, in which learning of a child’s first language does not rely on an innate grammar module. Instead the new research shows that young children use various types of thinking that may not be specific to language at all—such as the ability to classify the world into categories (people or objects, for instance) and to understand the relations among things. These capabilities, coupled with a unique hu­­­man ability to grasp what others intend to communicate, allow language to happen.

… young children begin by learning simple grammatical patterns; then, gradually, they intuit the rules behind them bit by bit.

Thus, young children initially speak with only concrete and simple grammatical constructions based on specific patterns of words: “Where’s the X?”; “I wanna X”; “More X”; “It’s an X”; “I’m X-ing it”; “Put X here”; “Mommy’s X-ing it”; “Let’s X it”; “Throw X”; “X gone”; “Mommy X”; “I Xed it”; “Sit on the X”; “Open X”; “X here”; “There’s an X”; “X broken.” Later, children combine these early patterns into more complex ones, such as “Where’s the X that Mommy Xed?”

usage-based linguistics, has now arrived. The theory, which takes a number of forms, proposes that grammatical structure is not in­­nate.

Instead grammar is the product of history (the processes that shape how languages are passed from one generation to the next) and human psychology (the set of social and cognitive capacities that allow generations to learn a language in the first place). More important, this theory proposes that language recruits brain systems that may not have evolved specifically for that purpose and so is a different idea to Chomsky’s single-gene mutation for recursion.

In the new usage-based approach (which includes ideas from functional linguistics, cognitive linguistics and construction grammar), children are not born with a universal, dedicated tool for learning grammar. Instead they inherit the mental equivalent of a Swiss Army knife: a set of general-purpose tools—such as categorization, the reading of communicative intentions, and analogy making, with which children build grammatical categories and rules from the language they hear around them.

Mapping the Brain

Source: Business Insider, Jul 2016

By combining data from a handful of imaging techniques, an international coalition of researchers has created one of the most precise maps of the human brain ever seen. The new map, published Wednesday in the journal Nature, divides the brain up into 180 unique brain regions, of which 97 have never been identified before.

an image created to show researchers’ progress towards creating more detailed brain maps:

In 2010, MIT neuroscientistSebastian Seung suggested in a TED talk that the traits that make us human come from what he called our “connectome” — the intricate web of robust information highways that criss-cross different parts of the brain. Our connectome is responsible for all of our thoughts, dreams, and actions.

Stated another way, “I am my connectome,” said Seung.