Unexplainable AI

Source: MIT Technology Review, Apr 2017

The mysterious mind of this vehicle points to a looming issue with artificial intelligence.

Deep learning, the most common of these approaches, represents a fundamentally different way to program computers.

This raises mind-boggling questions. As the technology advances, we might soon cross some threshold beyond which using AI requires a leap of faith. Sure, we humans can’t always truly explain our thought processes either—but we find ways to intuitively trust and gauge people. Will that also be possible with machines that think and make decisions differently from the way a human would? We’ve never before built machines that operate in ways their creators don’t understand. How well can we expect to communicate—and get along with—intelligent machines that could be unpredictable and inscrutable?

From the outset, there were two schools of thought regarding how understandable, or explainable, AI ought to be. Many thought it made the most sense to build machines that reasoned according to rules and logic, making their inner workings transparent to anyone who cared to examine some code. Others felt that intelligence would more easily emerge if machines took inspiration from biology, and learned by observing and experiencing. This meant turning computer programming on its head. Instead of a programmer writing the commands to solve a problem, the program generates its own algorithm based on example data and a desired output. The machine-learning techniques that would later evolve into today’s most powerful AI systems followed the latter path: the machine essentially programs itself.

At first this approach was of limited practical use, and in the 1960s and ’70s it remained largely confined to the fringes of the field. Then the computerization of many industries and the emergence of large data sets renewed interest. That inspired the development of more powerful machine-learning techniques, especially new versions of one known as the artificial neural network. By the 1990s, neural networks could automatically digitize handwritten characters.

The workings of any machine-learning technology are inherently more opaque, even to computer scientists, than a hand-coded system. This is not to say that all future AI techniques will be equally unknowable. But by its nature, deep learning is a particularly dark black box.

You can’t just look inside a deep neural network to see how it works. A network’s reasoning is embedded in the behavior of thousands of simulated neurons, arranged into dozens or even hundreds of intricately interconnected layers. The neurons in the first layer each receive an input, like the intensity of a pixel in an image, and then perform a calculation before outputting a new signal. These outputs are fed, in a complex web, to the neurons in the next layer, and so on, until an overall output is produced. Plus, there is a process known as back-propagation that tweaks the calculations of individual neurons in a way that lets the network learn to produce a desired output.

The many layers in a deep network enable it to recognize things at different levels of abstraction. In a system designed to recognize dogs, for instance, the lower layers recognize simple things like outlines or color; higher layers recognize more complex stuff like fur or eyes; and the topmost layer identifies it all as a dog. The same approach can be applied, roughly speaking, to other inputs that lead a machine to teach itself: the sounds that make up words in speech, the letters and words that create sentences in text, or the steering-wheel movements required for driving.

We need more than a glimpse of AI’s thinking, however, and there is no easy solution. It is the interplay of calculations inside a deep neural network that is crucial to higher-level pattern recognition and complex decision-making, but those calculations are a quagmire of mathematical functions and variables. “If you had a very small neural network, you might be able to understand it,” Jaakkola says. “But once it becomes very large, and it has thousands of units per layer and maybe hundreds of layers, then it becomes quite un-understandable.”

David Gunning, a program manager at the Defense Advanced Research Projects Agency, is overseeing the aptly named Explainable Artificial Intelligence program.

“It’s often the nature of these machine-learning systems that they produce a lot of false alarms, so an intel analyst really needs extra help to understand why a recommendation was made,” Gunning says.

Just as many aspects of human behavior are impossible to explain in detail, perhaps it won’t be possible for AI to explain everything it does. “Even if somebody can give you a reasonable-sounding explanation [for his or her actions], it probably is incomplete, and the same could very well be true for AI,” says Clune, of the University of Wyoming. “It might just be part of the nature of intelligence that only part of it is exposed to rational explanation. Some of it is just instinctual, or subconscious, or inscrutable.”

A chapter of Dennett’s latest book, From Bacteria to Bach and Back, an encyclopedic treatise on consciousness, suggests that a natural part of the evolution of intelligence itself is the creation of systems capable of performing tasks their creators do not know how to do.

“If it can’t do better than us at explaining what it’s doing,” he says, “then don’t trust it.”

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s