Scientists Try to Avoid Fooling Themselves

Source: Nature, Oct 2015

This is the big problem in science that no one is talking about: even an honest person is a master of self-deception.

In today’s environment, our talent for jumping to conclusions makes it all too easy to find false patterns in randomness, to ignore alternative explanations for a result or to accept ‘reasonable’ outcomes without question — that is, to ceaselessly lead ourselves astray without realizing it.

Earlier this year, a large project that attempted to replicate 100 psychology studies managed to reproduce only slightly more than one-third2. In 2012, researchers at biotechnology firm Amgen in Thousand Oaks, California, reported that they could replicate only 6 out of 53 landmark studies in oncology and haematology3. And in 2009, Ioannidis and his colleagues described how they had been able to fully reproduce only 2 out of 18 microarray-based gene-expression studies4.

Although it is impossible to document how often researchers fool themselves in data analysis, says Ioannidis, findings of irreproducibility beg for an explanation. The study of 100 psychology papers is a case in point: if one assumes that the vast majority of the original researchers were honest and diligent, then a large proportion of the problems can be explained only by unconscious biases. “This is a great time for research on research,” he says. “The massive growth of science allows for a massive number of results, and a massive number of errors and biases to study. So there’s good reason to hope we can find better ways to deal with these problems.”

Another reason for concern about cognitive bias is the advent of staggeringly large multivariate data sets, often harbouring only a faint signal in a sea of random noise.

One solution that is piquing interest revives an old tradition: explicitly considering competing hypotheses, and if possible working to develop experiments that can distinguish between them. This approach, called strong inference10, attacks hypothesis myopia head on. Furthermore, when scientists make themselves explicitly list alternative explanations for their observations, they can reduce their tendency to tell just-so stories.


Another solution that has been gaining traction is open science. Under this philosophy, researchers share their methods, data, computer code and results in central repositories, such as the Center for Open Science’s Open Science Framework, where they can choose to make various parts of the project subject to outside scrutiny. Normally, explains Nosek, “I have enormous flexibility in how I analyse my data and what I choose to report. This creates a conflict of interest. The only way to avoid this is for me to tie my hands in advance. Precommitment to my analysis and reporting plan mitigates the influence of these cognitive biases.”


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s